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Abstract 
 

This report considers variance and confidence interval estimates of ratios of Poisson random 

variables using an approximation to the ratio distribution of these variables.  One situation where 

this ratio arises is when normalized counts are considered for polyvinyl toluene (PVT) detectors 

with a small number of energy bins. These are the counts in an energy bin normalized to the total 

counts and represent the spectral shape for radiation portal monitor (RPM) measurements.  

Results of the variance estimate are shown for sample RPM data.  It is also shown that a simple 

approximation of variance that does not make use of ratio distributions is accurate even at low 

counts.  The ratio distribution is still required for evaluation of other statistical quantities such as 

confidence intervals. 
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1. Introduction 
 

Radiation Portal Monitors (RPMs) have been deployed at border locations across the United 

States for detection of illicit radioactive materials with emphasis on special nuclear materials 

(SNM).  These radiation portals measure gamma and neutron radiation time histories as a vehicle 

passes through the portal producing a series of gamma spectral and neutron count measurements 

for the vehicle. 

 

Many primary inspection RPMs use polyvinyl toluene (PVT) gamma detectors, which is a 

material with poor energy resolution where the measured spectra aren’t adequate for full 

spectrum analyses. Thus the measured counts are usually stored in a small number of energy bins 

or windows which span the energy range typically 0 – 3000 keV.  The spectral information 

contained in measured counts in these energy windows is still useful for some differentiation 

between benign (mostly naturally occurring radioactive materials or NORM) and threat sources.  

Many analysis algorithms and methods use the spectral information content in the energy 

windows for detection of threat sources or for spectral characterization of radiation sources
(1-4)

. 

 

For anomaly detection and spectral characterization analyses discussed in references (2-4) the 

spatial profile of the measured counts is used to determine the spatial region(s) of interest (ROI) 

or subset of the measurement spatial extent that has the source signal above background.  The 

counts for the time series of measurements in this region are added to obtain a single spectrum.  

In some cases the background is removed using an estimate of the suppressed background counts 

in the ROI.  The counts for window ,i  Ni ,,1  , which are assumed to follow Poisson 

statistics, are then normalized to the total counts in order to consider only the spectral shape of 

the source independent of the amplitude.  Since the total counts contain the window i  counts, the 

normalized counts for this window is a ratio of Poisson random variables that are partially 

correlated.  Similar ratios also arise for multi-energy radiography systems where ratios of 

attenuated beam intensities at different x-ray energies are used to infer properties and 

distributions of the intervening materials
(5)

.  

 

It is anticipated that benign and threat radiation sources will have different spectral shapes but 

the differences are not expected to be large due to the response of PVT.  Given measurements for 

relatively weak threat sources, it is extremely important to properly account for the expected 

variance due to Poisson noise in order to properly classify such sources and not confuse them 

with other naturally occurring radioactive materials (NORM).  This is the subject of this report 

where we consider approximations to the ratio distribution of two Poisson random variables for 

the purpose of estimation of variance and confidence intervals of the normalized counts.  The 

results of this analysis are then applied to sample RPM data with 8 energy windows.       
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2. Approximation of distribution of Ratios of Poisson Counts 
 

For the case of a small number of spectral or energy bins (such as usually used for a PVT RPM), 

it is often of interest to use the normalized counts in order to consider only the spectral shape and 

remove dependence on the source strength
(2-4)

.  For N spectral bins the normalized counts for a 

bin is given by:  

 

t

i

i
n

n
n ˆ    (1)  

where in  is the counts in the i-th bin and Tn  is the total counts, that is, 



N

j

jT nn
1

.  We are 

interested in finding the distribution of in̂  when the counts in all bins follow Poisson statistics 

keeping in mind that in  and Tn  are partially correlated.   The total counts Tn  can be partitioned 

into the sum of two uncorrelated quantities as:   


i

ij

jiT nnnn   and we obtain:  

i
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ˆ   (2) 

 

For sufficiently large counts, the Poisson distribution can be approximated by a normal 

distribution (in an integral sense) and thus in  and   can be approximated by uncorrelated 

continuous random normal variables X and Y respectively.  Let the mean values for X and Y be 

given by x and y  respectively.  Also, let the standard deviations be given by x and y .  We 

consider the more general case of the ratio 
XY

X
F


  where  is a constant.  For normal 

distributions for X and Y, the distribution of F  is derived in the appendix and is given by: 
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where )(erf denotes the well-known error function. The above expression for )(x  is the 

cumulative distribution function (CDF) of a standardized normal random variable.  For the factor 

(b) the positive sign is for the range /1 F  and the negative sign is for  F/1 .  In 

the limit 0  Eq. (3) reduces to published results
(6)

.  It should be noted that given a ratio 

distribution )(RD  with R being the ratio of uncorrelated continuous variables 
Y

X
R  (such as 

given in reference 6), the ratio distribution )(FG  with 
XY

X
F


  can be obtained by a simple 

transformation.  Since for any (X,Y) there is one-to-one correspondence between R and F, based 

on conservation of probability, we can write the differential form: 
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Equation (5) can be shown to be equivalent to Eq. (3) with )(RD as given in reference (6).  This 

can also be verified numerically. 
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Problem with the Distribution G(F): 

The ratio distribution )(FG  given by Eq. (3) is not well-behaved in the sense that the first and 

second moments don’t exist.  These moments are needed for evaluation of the mean and variance 

of the distribution. This problem can be seen by considering the limits 0 and yx  and 

1 and yx  .  In these limits the factor 0b  and 
 22 )1(

11
)(

FF
FG

 
  which 

reduces to the Cauchy or Lorentz distribution in the limit of 0 .  Note that the quantity 

)(2 FGF  needed for evaluation of the variance is not integrable when the upper or lower limit is 

infinity.  This problem arises from the singular point in the ratio F when XY   since  

    ,, YX   (see Figure (A.1) in the appendix for an illustration of the singular points). 

 

 

Approximation of the Poisson Distribution by a Truncated Normal Distribution 

The above problem which is caused by negative values of X or Y can be resolved if instead of 

the full normal distribution, a truncated distribution is used where only positive X and Y values 

are allowed.  This should provide a more physically acceptable approximation to the Poisson 

distribution especially for low counts.  The form of the truncated distribution we use is: 

 

 

0                                           0

0          
2

exp)(
2

2










 


X

X
X

Xf
x

x
x





   (6) 

 

In this case the normalization factor is found from the requirement 
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where )(erf  denotes the error function.  The equivalent distribution is used for the Y variable 

with a similar normalization factor yA .  Using these distributions the ratio distribution (see 

appendix for details) is given by: 
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where ]/1,0[ F  and the function )(x  is as defined previously.  The mean, variance, and 

confidence intervals of the distribution given by Eq. (7) are valid since all moments of )(FG  are 

integrable.  However these quantities are not easily found analytically and therefore numerical 

integration will be used for evaluation of any integral of this distribution. 
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3. Numerical Evaluation of Variance and Confidence Intervals 
 

The mean and variance of the distribution given by Eq. (7) are not easily evaluated analytically 

and therefore numerical integration is used to evaluate these and any other quantities that involve 

integrals of this distribution.  Since this function is differentiable and has no singular points, any 

simple numerical integration method can be used.  For the results shown in this section we used 

Romberg numerical integration
(7)

 for evaluation of all the integrals.  For this evaluation the mean 

counts in Eq. (2) are specified by:  xin   and y  .  We also use xx  2  and yy  2

since we’re dealing with approximations of Poisson distributions.  The limit 1  is used.  

Figure (1) below shows examples of the ratio distribution given by Eq. (7) for the case 

40 iT nn .   

 

 
Figure 1.  Examples of the ratio distribution given by Eq. (7) for three pairs of mean counts for 

total mean counts Tn  = 40.  The variances are   xx  2  <X> and yy  2
= <Y>. 

 

 

Variance Estimates: 

Two of the quantities of interest are the mean and the variance about the mean of the ratio 

distribution.  We evaluate these quantities for a specified value of Tn and vary in  from zero to 

Tn , that is, the ratio varies between 0 (zero counts in i-th window) and 1 (all the counts are in the 

i-th window).  Each pair  iTi nnn ,  has an associated ratio distribution given by Eq. (7) and we 

evaluate the mean and variance for this distribution using numerical integration.  Figures (2-3) 

show sample results.  Along with these results we also show results of simulations using a large 

number of Poisson trials for each pair.  Note that Poisson counts are generated independently for 

the mean values in  and )( iT nn  for each trial and then the ratio is calculated for each of the 

trials.  The mean and variance of these simulated ratios are then calculated.  Even for low total 
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counts of 10Tn  the approximation using the ratio distribution given by Eq. (7) is reasonable 

for the variance estimate.  For large values of Tn  the ratio distribution approximation is very 

good.  Figure 4 shows the dependence of the variance on the total counts for a fixed ratio of the 

means.  At total counts of about 25 the ratio distribution estimate of variance shows the largest 

departure (of about 10%) from the value obtained by simulations.   

  

 

 
 
Figure 2.  The top two plots compare the mean ratio and variance based on the ratio 
distribution given by Eq. (7) with results of simulations using Poisson random variables (blue 

curves) for mean total counts of Tn = n_t = 10.  Each point along the x-axis represents a 

different value of in = ni_0 (the mean counts in a specific energy window) and ranges from zero 

(no counts in the window) to 1.0 (all counts are in the window).  For the simulations, for each 

pair of mean values  iTi nnn , , one million trials were used to estimate the mean ratio and 

variance.   Left bottom plot: cumulative probability of the ratio distribution over two intervals: (1) 
mean ratio – sigma to mean ratio and (2) mean ratio to mean ratio + sigma where sigma is the 
square root of the calculated variance.  Except near the boundaries, the sum of these two 
probabilities is close to 70% which close to the 68% for a normal distribution.  Bottom right plot: 
cumulative probability over two intervals: (1) 0.0 to mean ratio and (2) mean ratio to 1.0 to show 
asymmetry of the distribution. The sum of these two probabilities is equal to unity.   
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Figure 3.  Same as Figure 2 with Tn  = 100. 

 

 

 
Figure 4.  Comparison of variance of ratio of counts Ti nn /  using the ratio distribution and exact 

values (based on simulations) varying the total counts Tn for a fixed ratio of means  

5.0/ Ti nn . 

9.600E-01

9.800E-01

1.000E+00

1.020E+00

1.040E+00

1.060E+00

1.080E+00

1.100E+00

1.120E+00

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

0 50 100 150 200

V
ar

ia
n

ce
 r

at
io

 

V
ar

ia
n

ce
  

Mean of total counts n_t 

Variance (Poisson simulations)

Variance Estimate

Ratio of variances



-16- 

 

A Simpler Method for Approximation of Mean and Variance: 

When the total counts are sufficiently large an alternate and much simpler method of mean and 

variance estimation of the normalized counts can be used.  Going back to Eq. (2), if we consider 

a single measurement, we can express the counts as the sum of a mean and a deviation from the 

mean, that is: 

iioi nnn   

  o   (8) 

  iot nnnnn             

and thus: 

)(

)(
ˆ

nn

nn

n

n
n

o
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For reasonably large total counts tn  a Taylor expansion to second order in deviation results in: 
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This expression can be expanded to obtain: 
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Using   inn  and taking the mean of Eq. (10) over many measurements we obtain: 
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where  denotes the mean of a quantity over the distribution of values.  The values in  and 

  are zero by definition of the mean and the means of products in  and  or their powers 

are separable because of the independence property, that is, these quantities are not correlated.  

So far this applies to any distribution.  If the counts follow Poisson statistics:   ioi nn 
2

 ,  

  o 
2

, and the above expression reduces to: 
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The variance of the normalized counts is given by: 
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Using the Taylor expansion expression from Eq. (10) and keeping up to quadratic terms in 

deviation we obtain: 
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In the above expression properties of Poisson distributions were assumed, namely   ioi nn 
2

  

and    o 
2

.  It turns out that the result given by Eq. (12) is identical to what would be 

obtained using the linear deviation approximation for a function of two variables: 
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where the derivatives are evaluated at the mean values of the variables.  For uncorrelated 

variables the overall variance is given by
(8)
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This equation is independent of the distributions involved.  For Poisson distributions the result is 

identical to Eq. (12).  For large counts the expressions given by Equations (11-12) should 
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approach the exact values.  This was verified by numerical tests with large numbers of Poisson 

trials of in  and   (1x10
6
 trials were used) and evaluation of in̂  and 2

i  using the mean and 

variance over all these trials as a good estimate of the exact values.  The comparison is shown 

Figures (5-6) below and shows the approximation is good for total counts as low as 10.  This 

result is surprisingly accurate for such low counts and was not expected before considering the 

ratio distributions.  Based on this result the ratio distribution is only needed when other statistical 

quantities such as confidence intervals are required.   

 

 

 

Figure 5.  Mean (left) and variance (right) of the normalized counts varying the ratio of mean 
counts in the ith window to the mean total counts.  The mean total counts is no = 10. The blue 
curves are obtained using 1 million statistical trials to evaluate the mean and variance of the 
normalized counts.  The red curves are obtained using the Taylor expansion approximations 
given by Equations (11-12). 

 
 

 
Figure 6.  Same as Figure (5) with no = 100. 
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Estimates of Confidence Intervals: 

In addition to variance, when only one measurement of a specific quantity is available it is often 

desirable to estimate the interval for this quantity (around the measured value) that is likely to 

contain a specified percentage of other equivalent measurements. This is known as the 

confidence interval.   For a continuous variable with a well-behaved distribution, there is an 

infinite number of intervals that would result in the same probability.  Thus the definition of the 

confidence interval has to be narrowed down to be the smallest possible interval for the specified 

probability.  This means that the distribution function (probability density function or PDF) for 

any value outside the confidence interval has to be smaller than the minimum PDF inside the 

interval.  Physically, this means that the confidence interval is that which most likely will contain 

the specified fraction of measurements of the quantity in question.  The previous definition of 

course holds only for distributions with a single maximum.  Distributions with multiple maxima 

are not of interest for this analysis.   

 

For continuous and symmetric probability distributions the confidence interval is centered about 

the mean value (point of maximum probability) and extends by equal amounts on either side of 

the mean.  For example, for a normal distribution, the 68% confidence interval extends from  

   to  around the mean of the distribution. 

 

For non-symmetric distributions such as the ratio distribution considered here, the mean is not 

necessarily the point of maximum probability.  For this case we estimate the confidence interval 

by first finding the ratio at maximum probability (Rmax) and then using equal contributions from 

either side of Rmax to obtain the total specified probability or confidence value.  For cases where 

the integrated probability from the R = 0 to Rmax is less than half the confidence value, R = 0 is 

used as the start of the confidence interval, and the right bound of the interval is adjusted to get 

the total confidence value.  The same is done for cases where the integrated probability from 

Rmax to R = 1 is less than half the confidence value.   Simple bisection algorithms are used to find 

Rmax and the confidence intervals.  All integrals of the ratio distribution are evaluated 

numerically.  We should note that this estimate of confidence intervals is not strictly consistent 

with the above definition (i.e. PDF outside the interval has to be smaller than inside) and is only 

used an illustrative estimate for this report. 

 

The two figures below show results of the estimated confidence intervals as the quantity n_i/n_t 

is varied for the case of 80% confidence value.   Along with these plots the “exact” results using 

simulations with a large number of Poisson trials are also shown.   The agreement is good for the 

two cases shown.  The discontinuous results for the simulations is due to the discrete nature of 

the two Poisson distributions (and therefore the resulting ratio distribution) that becomes very 

clear for low counts.  For low counts the probable values of the ratio (those ratios with 

significant probability of occurrence) are relatively few and this leads to the large discontinuities 

in the confidence intervals seen in the figures.  Discontinuities in integrated quantities will 

always be present for Poisson-related ratio distributions, but the amplitudes of these 

discontinuities become smaller as the total counts and therefore the number of probable ratios 

gets larger. 
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When only a single measurement of the counts is available, absent any other information, the 

best estimate for the mean counts are these measured counts and they can be used to estimate the 

confidence intervals for the ratio (normalized counts) for an energy window using the method 

described above.  

 

 
Figure 7.  Confidence intervals for the ratio vs. the mean ratio n_i/n_t for 80% confidence value 
for the case with n_t = 10 counts.  The smooth curves were obtained using the ratio distribution.  
The discontinuous curves are the results of simulations using 1x106 Poisson trials for each ni 
and nt value. 

 

 
Figure 8.  Same as Figure 7 for the case with n_t= 100. 
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4. Sample Results for RPM Data 
 

The estimated variance of normalized counts as obtained based on the ratio distribution 

discussed in the previous section can be used in spectral characterization analysis and anomaly 

detection.  In these types of analyses a distance metric is usually used and this distance can be 

weighted by the estimated variance to account for spread in measured spectra due to noise 

effects. The Mahalanobis is such a distance metric.   

 

In this section we will only show a very simple illustration of the effect of variance for measured 

PVT RPM spectra. The data used is for typical alarm occupancies encountered in the stream-of-

commerce at ports of entry. The analyzed spectra are made up of counts in eight spectral bands 

(also referred to as energy windows) which are summed over the spatial region that is 

determined to contain the radiation source. This region is often referred to as the spatial region of 

interest (ROI) and is determined from the time profile of measured gross counts as a vehicle 

traverses the RPM.  Note that the background is not subtracted in this analysis.  The variance of 

the normalized counts for all windows is estimated using the approximate ratio distributions of 

the quantities: 

 

 Ni

n

n
n

N

k

i

i
i ,,1     ,ˆ

1






, with N = 8.    

 

Figure 9 shows the normalized counts with the variance estimates in the form of a rectangle for 

each pair of energy windows.  Each rectangle is centered around the normalized counts and has 

extent of  2  in each dimension where   is the square root of the variance estimate for the 

window in question.    

 

The variance estimate is different for each measurement and depends on the source signal 

amplitude and the number of time samples in the ROI.  The results show several spectral clusters 

when all energy windows are considered.  It is presumed that this data is for sources that contain 

naturally occurring radioactive materials (NORM) or are due to medical treatments.  Cluster 

analysis of this data for spectral characterization purposes along with analysis of threat source 

spectra should help assess the capability of PVT RPMs to discriminate between benign NORM 

and threat sources.  Anomaly detection is one method that is used for this purpose. 
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Figure 9.  Normalized spectra for RPM measurements showing the magnitude of variance due 
to measurement noise.  Each rectangle shown represents the normalized counts for two energy 
windows (center of rectangle).  The extent of each rectangle in each dimension is twice the 
square root of the estimated variance based on the ratio distribution.  The background was not 
subtracted from the ROI spectra in this analysis.  
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6. Summary 
 

This report considered estimation of variance and confidence intervals of normalized counts 

using analysis based on ratio distributions.  The normalized counts for an energy window is the 

counts divided by the total counts and can be represented as a ratio that is a function of two 

uncorrelated random variables, the counts in the window and the counts summed over all the 

other windows. Truncated normal distributions were used to approximate the Poisson 

distribution for the counts where a normal-like distribution is used, but the counts are constrained 

to positive values.  This turns out to be a good approximation and avoids problems that result 

from singular values in the ratio when all real values are allowed.  The variance of the ratio 

distribution was estimated numerically.  Using simulations it was shown that this variance 

estimate is reasonably accurate even for low total counts.  This variance estimate was applied to 

sample alarm RPM data for 8 energy windows to show the spread in the measured normalized 

spectra.  

 

It turns out that using a simple approximation for variance is equally good for low counts without 

the need for detailed analysis involving ratio distributions.  However the ratio distribution is still 

required for obtaining other statistical quantities such as confidence intervals.     
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Appendix 
 

In this section the derivation of the ratio distribution of the quantity  XYX /  is provided 

where X and Y are uncorrelated random normal variables and   is a constant.   

 

We start by considering the general case of finding the distribution of the general function 

),( YXFF   where X and Y are random uncorrelated variables with distribution functions 

)(1 Xf  and )(2 Yf respectively.  We need to find the distribution )(FG  so that dFFG )(  is the 

probability that F  is in the range F  to dFF  .  In the YX ,  plane contours of constant F  need 

to be determined.  Let S denote a variable along such a contour and let U  denote the variable 

orthogonal to the contour.  The distribution )(FG is then found from: 

 

dUYfXfYXJdSdFFG
F














 

constant  ofContour 

21 )()(),()(    (A.1) 

 

Where J is the the Jacobian of the transformation from  YX ,  to  US, .  Thus given F we need 

to find  US,  in terms of   YX , .  The above equation must also obey the normalization: 
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 (A.3) 

 

Normal distributions of the following forms are assumed to start with: 
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For the case under consideration in this report we have: 

 

 XYXF  /  or  X
F

F
Y 







 


1
 

 

where   is a positive value. Thus the contours of constant F are lines that pass through the 

origin as shown in the figure below.   These contours can be described simply by: 

 

)cos(rX   and  )sin(rY   
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The resulting expression for F  is:  

 

)cos()sin(

)cos(






F   (A.6) 

 

On the dashed line in the figure 0)cos()sin( 00   , thus )arctan(0   .  For 

  0   ,0  and for 4/3   ,1 0   . 

 

 
 

Figure (A.1)  Contours of constant F values. 

 

Using Eq. (A.1) we can write: 
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2121 )sin()cos(sincos)(  rfrfrfrfdrdrdFFG   (A.7) 

 

Using the explicit forms for 1f  and 2f  we obtain: 
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Using Eq. (A.6) we find: 
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After some straightforward algebra Eq. (A.8) results in: 
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 = CDF for standardized normal distribution. 

 

In the limit 0  Eq. (A.11) reduces to published results
(6)

.  The distribution )(FG given by 

Eq. (A.11) does not possess integrable moments and thus presents a problem when one is 

interested in evaluation of statistical quantities such as variance.  This is a result of the original 

random variables X and Y allowed to have negative values.  To overcome this problem we 

consider truncated distributions that are only allowed to have positive X and Y values. 

 

Truncated Normal Distributions: 

For modified normal distributions that are only allowed to have positive values the problem with 

singular values of the ratio  XYXF  /  are eliminated.  In this case the ratio is limited to 

the range /10  F , or the top-right quadrant of Figure (A.1).   

 

The truncated distribution )(1 Xf  considered here is given by 
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where X is limited to positive values and xA  is found from the normalization 
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Similar expressions are used for )(2 Yf .   With these modified distributions for X and Y, the 

distribution )(FG  is found in the same way as before using the normalizations and Eq. (A.8) 

without the )(    term.  The result is: 
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where   and ,, ba are as defined previously with only the (+) option for b  required.  One 

method of verification of Eq. (A.12) is to numerically test the normalization condition given by: 

 

 

/1

0

1)( dFFG  

 

This was found to be correct to within the expected numerical accuracy.   
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